Supporting Information for

A Chiral 2-D Donor-Acceptor Array of a Bipyrazine N-Oxide and Tetracyanoethylene

Byron J. McGee, Lindsay J. Sherwood, Melinda L. Greer, and Silas C. Blackstock*

Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336

General Methods and Materials. All starting materials were purchased from Aldrich. NMR spectra were obtained using a Bruker AM-360 spectrometer operated at 360 MHz for ¹H NMR and 90 MHz for ¹³C NMR. Chemical shifts (δ) are reported relative to TMS. Melting points were determined with a Mel-Temp apparatus and are uncorrected. IR spectra were recorded on a Avatar 360 FT-IR spectrometer. UV-vis data were recorded on a Hewlett-Packard 8452A diode array spectrometer and GC/MS data were obtained using a Hewlett-Packard 5890/5971 GC/MS instrument with a fused silica capillary column (25m) of cross-linked methylsilicone and operating in EI mode at 70 eV ionizing voltage.

Acetonitrile (Fisher, HPLC grade) was purified by distillation from P_2O_5 . Dichloromethane (Fisher, reagent grade) was stirred over concentrated H_2SO_4 until the acid layer ceased to darken further, washed with aq Na₂CO₃ and H₂O, dried with anhydrous CaCl₂, and then distilled from CaH₂. Tetrahydrofuran (Fisher, HPLC grade) was refluxed with K metal and benzophenone and distilled upon establishment of a dark blue solution. TCNE was purified by multiple sublimations at 0.05 mm Hg at 90-100 °C through a bed of activated charcoal until perfectly colorless cubic crystals were obtained.

The powder diffraction spectra were collected on a Rigaku Geigerflex powder diffractometer (Cu K α radiation) using 1° slits with scan conditions as follows: scan speed 0.125 - 0.150 °/min, sampling interval 0.050°, 2 Θ range 5.00 - 40.00°. A Siemens SMART diffractometer equipped with CCD area detector using graphite monochromated Mo K α radiation was used to collect data for all single crystal structures. Crystals analyzed were mounted on glass

fibers using grease and data were collected at -100 °C. Solution and refinement of the data was performed using the SHELXTL¹ crystallographic software package. All non-hydrogen atoms were refined anisotropically.

2-(1H)-3,5,6-Trimethylpyrazinone (3) was prepared according to literature procedures.^{2,3}

2-Chloro-3,5,6-trimethylpyrazine (**4**).² In a 100 mL round bottom flask equipped with a reflux condenser was placed **3** (1.9975 g, 0.014475 mol), POCl₃ (11 mL, 0.12 mol), and one drop of concentrated sulfuric acid. The mixture was refluxed under nitrogen for 20 hours. After allowing the mixture to cool to 25 °C, 40 mL of ether was added followed by 72 g of ice to effect hydrolysis of excess POCl₃. While cooled in an ice bath, the mixture was basified to a pH > 10 with 50% KOH solution. The mixture was then continuously extracted with ether for 14 days. After removal of the ether *in vacuo*, the resulting crude product was loaded onto a column of grade 1 basic alumina (1 x w = 5.5 cm × 5.1 cm). Elution with CH₂Cl₂ gave pure **4**, 1.0405 g (45.90%): mp 50-51 °C (lit.² 56-57 °C). ¹H NMR (360 MHz, CDCl₃) δ 2.57 (s, 3H), 2.48 (s, 6H).

3,3',5,5',6,6'-Hexamethyl-2,2'-bipyrazine (5). This procedure was adapted from that of Constable et al.⁴ Following the procedure of Perrin and Armarego,⁵ 10 g of zinc dust (Aldrich) was activated by stirring it a 150 mL beaker with 25 mL of 2% HCl for one minute. The acid was removed by filtration and the zinc was then washed with 2 x 25 mL of 2% HCl, 3 x 8 mL of distilled water, 2 x 17 mL of 95% EtOH, and 2 x 17 mL of anhyd ether. The zinc was then thoroughly dried in *vacuo* and stored under N₂ until use. In a 50 mL two-necked round bottom flask was placed acid washed zinc (0.6724 g, 10.29 mmol), tetramethylammonium iodide (1.7140 g, 6.665 mmol), triphenylphosphine (1.0287 g, 3.922 mmol), NiCl₂ (0.2694 g, 2.078 mmol), and dry THF (40 mL) purged with N₂. The mixture was stirred under N₂ for approximately 50 min until a red-brown color was observed. At this time, **4** (1.0405 g, 6.644 mmol), dissolved in 20 mL of dry THF, was added via syringe and the mixture was stirred at 45-50 °C for 7 days.

The mixture was then cooled to room temperature and 2M NH₄OH was added until a pH > 10 was achieved. The reaction mixture was then filtered through a cotton plug and extracted with ethyl acetate (6 × 25 mL). The combined organic layers were concentrated by evaporation *in vacuo* and extracted with 2M HCl (5 × 5 mL). The combined aqueous layers were made basic (pH > 10) while cooled in an ice bath by addition of KOH pellets. The basic aqueous solution was then extracted with ethyl acetate (5 × 10 mL). Following removal of the ethyl acetate *in vacuo*, the resulting crude product was purified by column chromatography (silica gel, 1 x w = 13.1 cm × 4.0 cm). Elution with ethyl acetate gave a pure white, crystalline solid, **5**, 0.5638 g, (70.13%): mp 122 °C. ¹H NMR (360 MHz, CDCl₃) δ 2.58 (s, 6H), 2.55 (s, 6H), 2.35 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 151.28, 148.92, 148.47, 147.67, 21.86, 21.54, 21.10; IR (KBr, cm⁻¹) 2990, 2948, 2923, 1446, 1401, 1384, 1363; HRMS (EI) calcd. for C₁₄H₁₈N₄ (M⁺) 242.1532, found 242.1538.

3,3',5,5',6,6'-Hexamethyl-2,2'-bipyrazine-N,N',N'',N'''-tetraoxide (1).⁶ In a 50 mL round bottom flask was placed OXONE[®] (0.5007 g, 814.4 µmol) dissolved in approximately 2 mL of water. To this was added **5** (49.0 mg, 202 µmol) dissolved in 1 mL of CH₂Cl₂ and the biphasic solution stirred vigorously. Over the course of 5 days another 0.9982 g (162.4 µmol) of OXONE[®] was added to force the reaction to completion. After the initial five days, the reaction mixture was refluxed for another five days at 45 - 50 °C, again to force the reaction toward complete oxygenation. The organic layer of the reaction mixture was then isolated and the aqueous layer extracted with CH₂Cl₂ (5 × 10 mL). After removal of the CH₂Cl₂ *in vacuo*, the crude solid (~ 0.2 g) was purified on silica gel prep plates (0.1 g per 250 µm coated plate). Elution with CH₂Cl₂/MeOH (10:1, R_f = 0.3) gave a colorless crystalline solid, **1**, 56.3 mg (90.9 %): mp 267-275 °C (dec.). ¹H NMR (360 MHz, CDCl₃) δ 2.63 (s, 6H), 2.58 (s, 6H), 2.32 (s, 6H); ¹³C NMR (90 MHz, CDCl₃) δ 145.99, 144.43, 143.71, 134.71, 14.74, 14.40, 14.06; IR (KBr, cm⁻¹) 2927, 1509, 1437, 1311, 1289, 1103; HRMS (EI) calcd. for C₁₄H₁₈N₄O₄ (M⁺) 306.1328, found 306.1336.

Crystallization of 1(TCNE)₂. In a 5 mL vial, **1** (5.0 mg, .016 mmol) and TCNE (5.1 mg, .040 mmol) were dissolved in 0.4 mL of CH_2Cl_2 along with a few drops of ether. The vial was then placed in a closed ether chamber and cooled in a freezer to -20 °C. After 6 days, red, cube-shaped crystals were collected: mp 165 °C (dec.).

JOB Plot Analysis. A JOB plot of the 1/TCNE complex absorbance vs. mole fraction TCNE was prepared from UV-vis results in CH_2Cl_2 at 25 °C with [1] + [TCNE] = 0.020 M. Spectra were recorded at TCNE mole fractions of 10, 20, 30, 40, 50, 60, 70, 80, and 90% to give CT absorbances (496 nm - 800 nm) of 0.4978, 0.8408, 1.0847, 1.2653, 1.3069, 1.2441, 1.1248, 0.8776, 0.4815, respectively.

Benesi-Hildebrand Analysis. Benesi-Hildebrand analysis of 1/TCNE complexation was performed in CH₂Cl₂ at 25 °C using [1] = 0.00118 M and [TCNE] = 0.0111, 0.0200, 0.0301, 0.0398, 0.0486, and 0.0584 M. Plots of 1/[TCNE] vs. [1]/Abs were prepared from UV-vis data at 480, 490, 500, 510, and 520 nm. CT absorbance values were corrected for baseline drift by subtraction of absorbance at 800 nm. The average K_f value was found to be 3.59 M⁻¹ ± 0.1. Standard deviation was calculated using a T-value correction factor at confidence levels of 95%.⁷

1 (mM)	TCNE (mM)	A ₄₈₀₋₈₀₀	A ₄₉₀₋₈₀₀	A ₅₀₀₋₈₀₀	A ₅₁₀₋₈₀₀	A ₅₂₀₋₈₀₀
1.18	11.1	0.17882	0.18480	0.18538	0.17950	0.16893
1.18	19.9	0.29792	0.30890	0.30986	0.30060	0.28245
1.18	30.1	0.42659	0.44380	0.44618	0.43280	0.40590
1.18	39.8	0.55632	0.57830	0.58101	0.56260	0.52787
1.18	48.6	0.66085	0.68740	0.69048	0.66820	0.62633
1.18	58.4	0.77722	0.80860	0.81136	0.78440	0.73399
$\epsilon (M^{-1}cm^{-1})$		4373	4686	4777	4492	4092
$K_{f}(M^{-1})$		3.65	3.53	3.47	3.59	3.88
\mathbf{r}^2		0.999	0.999	1.000	1.000	1.000

Table 1. Data for Benesi-Hildebrand Study of 1/TCNE in CH₂Cl₂ at 25 °C

X-ray Powder Diffraction and X-ray Single Crystal Data Tables

X-ray powder diffraction spectra were taken of 15-20 mg samples of $1(\text{TCNE})_2$ cocrystals. The samples were ground into powder and mounted on a 1cm x 1cm glass slide using doublesided tape. A calculated powder diffractogram for the observed $1(\text{TCNE})_2$ single crystal structure was obtained via the SHELXTL XPOW subroutine.¹

 Table 2. Powder Diffraction Results for 1(TCNE)2

Sample	Observed (2 Θ , deg)		Calculated (2 Θ , deg)			
1 (TCNE) ₂	10.36	17.33	26.34	10.43	17.32	26.35
	13.02	23.08	26.48	13.02	23.26	26.51
	13.10	26.20	27.01	13.16	26.23	27.20

Empirical formula	C26 H18 N12 O4
Formula weight	562.52
Temperature	173(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = $18.1957(6)$ Å alpha = 90 deg. b = $10.06870(10)$ Å beta = $118.699(2)$ deg. c = $18.1772(6)$ Å gamma = 90 deg.
Volume, Z	2921.09(14) Å^3, 4
Density (calculated)	1.279 Mg/m^3
Absorption coefficient	0.092 mm^-1
F(000)	1160
Crystal size	0.12 x 0.12 x 0.54 mm
Theta range for data collection	on 2.39 to 25.00 deg.
Limiting indices	-22<=h<=23, -12<=k<=13, -23<=l<=10
Reflections collected	7451
Independent reflections	2560 [R(int) = 0.0343]
Absorption correction	None
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2522 / 0 / 227
Goodness-of-fit on F^2	1.036
Final R indices [I>2sigma(I))] $R1 = 0.0514, wR2 = 0.1074$
R indices (all data)	R1 = 0.0875, $wR2 = 0.1334$
Extinction coefficient	0.0039(5)
Largest diff. peak and hole	0.465 and -0.173 e.A^-3

Table 3. Crystal Data and Structure Refinement for 1(TCNE)₂.

× 1/		0	3	
	Х	У	Z	U(eq)
0(1)	5024(1)	8970(2)	1625(1)	32(1)
N(2)	4421(1)	9753(2)	1539(1)	26(1)
0(3)	2609(1)	12312(2)	1263(1)	41(1)
C(4)	4571(1)	10692(2)	2137(1)	24(1)
N(5)	3187(1)	11468(2)	1357(1)	28(1)
C(6)	3650(1)	9655(2)	844(1)	26(1)
C(7)	3960(1)	11560(2)	2056(1)	27(1)
C(8)	4066(2)	12618(3)	2667(2)	42(1)
C(9)	3019(1)	10505(2)	763(1)	28(1)
C(10)	2146(2)	10482(4)	57(2)	42(1)
C(11)	3573(2)	8633(3)	222(2)	38(1)
C(12)	895(2)	13081(3)	534(2)	40(1)
N(13)	590(2)	13236(3)	-170(2)	51(1)
C(14)	1278(2)	12943(3)	1439(2)	40(1)
C(15)	463(2)	10952(3)	1259(2)	43(1)
C(16)	1842(2)	13966(3)	1963(2)	43(1)
C(17)	1067(2)	11951(3)	1775(2)	41(1)
C(18)	1398(2)	11869(3)	2667(2)	48(1)
N(19)	2275(2)	14789(3)	2365(2)	69(1)
N(20)	-4(2)	10143(3)	912(2)	75(1)
N(21)	1632(2)	11778(3)	3366(2)	78(1)
	• • • • •			

Table 4. Atomic Coordinates (x 10^4) and Equivalent Isotropic Displacement Parameters (Å x 10^3) for $1(\text{TCNE})_2$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 5. Bond Lengths (\AA) and Angles (deg) for $1(\text{TCNE})_2$

O(1)-N(2)	1.298(2)
N(2)-C(6)	1.368(3)
N(2)-C(4)	1.366(3)
O(3)-N(5)	1.298(2)
C(4)-C(7)	1.365(3)
C(4) - C(4)	1.483(4)
N(5)-C(7)	1.373(3)
N(5)-C(9)	1.371(3)
C(6)-C(9)	1.382(3)
C(6)-C(11)	1.486(3)
C(7)-C(8)	1.482(4)
C(9)-C(10)	1.487(3)
C(12)-N(13)	1.135(3)
C(12)-C(14)	1.452(4)
C(14)-C(17)	1.320(4)
C(14)-C(16)	1.443(4)
C(15)-N(20)	1.126(4)
C(15)-C(17)	1.452(4)
C(16)-N(19)	1.135(3)
C(17)-C(18)	1.436(4)
C(18)-N(21)	1.133(3)

Angles (degrees)	
O(1)-N(2)-C(6)	120.0(2)
O(1)-N(2)-C(4)	119.4(2)
C(6)-N(2)-C(4)	120.6(2)
C(7)-C(4)-N(2)	121.1(2)
C(7)-C(4)-C(4)	123.4(2)
N(2)-C(4)-C(4)	115.5(2)
O(3)-N(5)-C(7)	118.9(2)
O(3)-N(5)-C(9)	119.9(2)
C(7)-N(5)-C(9)	121.3(2)
N(2)-C(6)-C(9)	119.0(2)
N(2)-C(6)-C(11)	115.6(2)
C(9)-C(6)-C(11)	125.3(2)
C(4)-C(7)-N(5)	118.4(2)
C(4)-C(7)-C(8)	124.9(2)
N(5)-C(7)-C(8)	116.7(2)
N(5)-C(9)-C(6)	119.6(2)
N(5)-C(9)-C(10)	115.7(2)
C(6)-C(9)-C(10)	124.8(2)
N(13)-C(12)-C(14)	177.5(3)
C(17)-C(14)-C(16)	120.5(3)
C(17)-C(14)-C(12)	120.5(3)
C(16)-C(14)-C(12)	118.8(3)
N(20)-C(15)-C(17)	174.8(3)
N(19)-C(16)-C(14)	178.6(3)
C(14)-C(17)-C(18)	120.6(3)
C(14)-C(17)-C(15)	121.5(2)
C(18)-C(17)-C(15)	117.8(3)
N(21)-C(18)-C(17)	177.3(4)

- s2 Karmas, G.; Spoerri, P. E. J. Am. Chem. Soc. 1952, 74, 1580-84.
- s3 MacDonald, J. C.; Bishop, G. G.; Mazurek, M. Tetrahedron 1976, 32, 655-660.
- s4 Constable, Edwin C.; Morris, D.; Carr, S. New J. Chem. 1998, 287.
- s5 Perrin, D. D.; Armarego, W. L. F. *Purification of Laboratory Chemicals*; Pergamon: New York, 1988.
- s6 For previous accounts of OXONE mediated N-oxide formation see: (a) Greer, M. L.;
 Sarker, H.; Mendicino, M. E.; Blackstock, S. C. J. Am. Chem. Soc. 1995, 117, 10460. (b)
 Greer, M. L.; McGee, B. J.; Rogers, R. D.; Blackstock, S. C. Angew. Chem. Int. Ed. Engl.
 1997, 36, 1864.
- s7 Gordon, Arnold J.; Ford, Richard A. *The Chemist's Companion: A Handbook of Practical Data, Techniques, and References*; Wiley-Interscience: New York, 1972.

s1 SHELXTL/PC Version 5.0 Structure Analysis Package, Siemens Industrial Automation, Inc., 1994.